Real-Life Smartphone Physics:

Examine your own hearing threshold with a smartphone

Name

Audiometric test with a smartphone

1. Which of the following factors could distort a hearing test? Check.

Root cause	can distort	can not distort
Body size		
Traffic noise		
Conversations in the room		
Gender		
Respiratory rate		
Loose headphone contact		

In the following hearing test, be sure to do it in a quiet environment and avoid interference. If possible, use the headphones that came with your smartphone.

- 2. Conduct audiometric test with the iOS app (alternative for Android smartphones: see last page)
 - 1. Open the app Hearing Test & Ear Age Test

or download the app.

- 2. Start *Hearing Test* and follow the instructions on the screen.
- 3. At the end you get a graph. Press Share and then Save Image.
- Carrier ▼ 1924 FM

 THE ARM

 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
 THE ARM
- 3. Open *Fotos* and look at the results of your hearing test. The graph shows how well you hear different tones. The tones are getting higher and higher from left to right.
- 4. What may have disturbed / influenced the measurement?

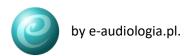
Enter the means in the following online table:

•			
•			
•			
•			

5. Read the dB-HL for the seven frequencies and both ears from the audiogram, enter the values in the following table and calculate the mean of both ears!

	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
Left ear							
Right ear							
Mean							

http://did.physik.lmu.de/qr/q.php?c=zsb



6.	Compare	
	1.	Compare your result with the results of your classmates.
	2.	Who can hear best?
		conversations (2.0 kHz):
		at a frequency of 8.0 kHz:
		at a frequency of 0.125 kHz:
	3.	Who can hear best overall?
		Name:
	4.	How did you know who heard best?
		
The	<u></u>	hit the pinna. There they are passed through the ear canal to the middle
ear	. The	sits in the middle ear and begins to vibrate. There are fine
		in the cochlea. The eardrum stimulates
the	m to vibrat	e via several intermediate stations.
	_	under the fine sensory hairs, which register the
		and pass them on to the Different
		are stimulated depending on the We hear tones around a
		5 kHz the We perceive tones with lower or higher frequency
the		.

sensory hairs	brain	loudest	quietest	vibrating
nerves	sound waves	ear drum	movements	tone

For Android smartphones

An alternative app for Android smartphones is e.g. *Hörtest*

You can download it for free: https://play.google.com/store/apps/details?id=mobile.eaudiologia